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.._ A. USING U-STATISTICS TO
DETECT BUSINESS CYCLE
NONLINEARITIES

Bruce Mizrach

Nonlinearity is an omnipresent factor in economics. Monetary and fiscal
policies change regime, exchange rates change from flexible to fixed and
back again. Time series analysts have not been unaware of these
nonlinearities; many simply felt that from the perspective of modelling,
linear approximations were sufficient. A large part of this malign neglect
came from the fact that the nonlinearities remained hidden from the
conventional technical apparatus. Many aggregate macro time series are
uncorrelated, leading to the conclusion that they were simply random.

The belief that hidden structure might be lurking in the data was
strengthened by the growth of the literature on nonlinear dynamics. Many
simple, deterministic data generating mechanisms produce time series with
the spectra of white noise.

The need for tests to detect a wide range of temporally dependent
alternatives was first approached using an apparatus known as the corre-
lation integral. Grassberger and Procaccia (1984) first introduced this tech-
nique as a means of estimating fractal dimension.

Brock, Dechert, and Scheinkman (BDS, 1987) put the correlation inte-
gral on a firm statistical footing. They recognized that the integral was of
the class of U-statistics first rigorously analyzed by Hoeffding (1948) and
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extended to the time series case by Denker and Keller (1983). This theory
is developed in Section 1.

BDS devised a test for independence and idential distribution of a time
series which has motivated this work. In Section 2, I discuss the BDS test.
The statistic, because of its weak assumptions and resistance to nuisance
parameters, has found wide application in the nonlinear time series
literature.

The weakness of all tests involving the correlation integral has been
their performance in small finite samples. In Monte Carlo analysis in Sec-
tion 3, I find the size to be extremely poor in samples under 500 observa-
tions. This large a sample size requirement has prevented application of
the BDS to most economic data, for which there are simply too few ob-
servations. At N = 50, a conventional economic sample size, the BDS rejects
five times more frequently than it should at a conventional 5 percent test.

Brock and Dechert (1989) speculate that “astute choices of kernel
function . . . should improve the ability of this [the BDS] test.” Their intui-
tion is indeed correct. In Section 4, I review the development a new test
proposed in Mizrach (1991), which is computationally simpler and more
accurately sized in finite samples.

Mizrach’s simple nonparametric test (SNT) statistic extends the range
over which the U-statistics can applied. I document in Section 5 that for
samples as small as 50 observations, the statistic is within 30 percent of its
appropriate nominal size; with the BDS, it takes five times as many obser-
vations to achieve a similar size.

Mizrach (1991) suggests that this finite sample improvement does not
weaken the power of the BDS. I turn to an empirical application in the last
part of the paper to explore this conjecture. I survey the nonlinear time
series literature in Section 6 and find that very little work has been done
on European business cycles. Consequently, I undertake a study of aggre-
gate macroeconomic time series for France, Italy and Germany. I look at
the real (M3) money supply, indices of industrial production, real wages
and prices, unemployment, and the current account deficit. Both the BDS
and the SNT discover non-GARCH nonlinearities in a number of series.

A concluding section reassesses the SNT and BDS in the context of
business cycle applications.

1. U-Statistics: An Introduction

In Section 1.1, I begin with some notational preliminaries and definitions
needed for expository purposes. In a second part, I move on to Denker
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and Keller’s extension of asymptotic theory for U-statistics to the time
series case.

1.1. Some Preliminaries

U-statistics' are generalizations of sample averages. The components in-
clude a kernel, a symmetric measurable function i:R™ — R, and the
permutation operator, %, ,,, which sums over the ( hL distinct combina-

tions of m-elements in a sample of size n. ol
Let {x;) be a strictly stationary stochastic process with distribution func-
tion F, and let [X,,- -+, X,] be a sample of size n. Define the canonical

mapping,
U = UK Ko 5o Y = () B XS, X375 X:): (@D
The U-statistics are a broad class. I begin with two simple examples. Let
m =1, h(x) = x;, (J)" = ln, then

UXy, - Xa)=1nY, X=X (1.2)
=] N
or just the sample mean. Now let m = 2, M = T and h(x; — x;)
= (x; — x;)/2, one now has,
2
UXy, X, = WX = X
(X ") n(n—1) _mM_...n__, (X )
# n “ INM
=—-» »>» Xi-nX*|, (1.3)
(n-1) ﬁMu_

namely, the sample variance.

1.2. Asymptotic Theory for U-Statistics: The Time Series
Case

Hoeffding (1948) was the first to show that U-statistics could be approx-
imated using a projection representation as the sum of i.i.d. random vari-
ables. For the analysis of the correlation integral, we will need to consider
a vector valued version of (1.1). Let x/" € X™ be a random vector in R",
and let F(x") be its joint distribution. Define the new kernel function,
h:R™"x R™---x R™ = R,
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hGr) =]... [ a@r, . xl) 1, dF(xp). (1.4)
Serfling (1980) notes that the new kernel is just a conditional expectation,
(") = E[A(X{", -, XP)XT = x"], (15)

where the expectation is taken with respect to the distribution function, F.
Now taking the expected value of (1.5), define

0= hy(x") = E[R(X[", - X¥)XT = x"). (1.6)
The difference between (1.5) and (1.6),
gilxt") = hy(x7') - 6, (1.7)

has zero expectation, and a martingale representation that is used quite
often for the central limit theory of U-statistics. Note that

E[g\(XT)] = E[g.(xT", X3')] = 0. (1.8)
The projection of a U-statistic is defined as
- N
Uy =2, ) - (m-1p. (1.10)

Serfling then proves that the asymptotic theory for Uy and Uy are essen-
tially equivalent, that is,

E[Uy - Uy]* = O(N™), (1.10)

assuming the relevant moments exist.

The projection method has greatly simplified the central limit theory for
U-statistics. Denker and Keller (1983) have shown that the variance of a
U-statistic is given by

N
op, = E[(3,_, &(X")], .11)
and under weak mixing assumptions” that
N o
——(Uy = 8) — N(0, 1). (1.12)
moy,

The Denker-Keller result has proved instrumental in the dynamical sys-
tems literature. In particular, it is the basis for the test for independence
introduced by Brock, Dechert and Scheinkman (1987) to which we know
turn.
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2. The Correlation Integral and the BDS Test

In the literature on nonlinear analysis, data from dynamical systems have
frequently been studied using the correlation integral. Originally proposed
by Grassberger and Procaccia (1984) as a means of determining the fractal
dimension of an attracting set, this estimator can also be classified as a U-
statistic. Consider again vector m-histories,

Xy = AH__.H:._.....H:ELY ANHV
with joint distribution F(x7). Introduce now the kernel,
he, x7) = I|lx7 - x7]| < €] = Ix T, %7, ©): @2
where 1 is the indicator (or Heaviside) function, and we take .||, for
simplicity, to be the max norm,
m=1
I(xp, x, €) = Ifmax [ [1xi; — %ol < €]- (2.3)
{ i=0
The correlation integral is given by
o C(m, €)= [ [ I(x, 2", e)dF (x")dF (x]"). (2.4)
XX
At dimension 1, this simplifies to
@, e)= :T,? ~ &) - F(x, — &)|dF(x,). (2.5)
XX

A consistent estimator of (2.4) is the U-statistic,
2 N-1 N
C(m,N, €)= ——— (X", X™m, €), 2.6
ﬁ u 2ﬁ2 = L_.v M—u_ Mqu:_ m ! u A v

where N = n —m + 1. (2.6) is the expected number of m-vectors less than
e away from any given m-vector.

The analysis of statistics based on the correlation integral begins with
the assumption that the X’s are independent and identically distributed.
Define S(m, N, €) = C(m, N, €) — C(1, N, €)™. BDS show that

lim S(m, N,g) = 0. 2.7)

N=poa

This follows from the fact that each of the events in the indicator function
is a binomial trial with probability 8 = C(1, N, ),

m-1
Prob.[(max : 1X,; = X501l < €] = Prob.[Ix, — x,| < €]™. (2.8)
toico
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The expression for the variance (2.5) also is more tractable when the data
are i.i.d. For the kernel used in (2.2),

sa%_.z.a_u%H_ﬁxs-ﬁ_,z_e:af
(m - 1)C(1, N, €)™ — m*KC(1, N, €], (29)
where
K = [ [ [ 1005, ©)1x,, %, AF (5)AF(x,). (@10)
XXxXx
A consistent estimator of K is

6

K(N, €)= N(N -1)(N -2) M‘H_N M,.w,!_: Mw.u:_
IX, X,, e)l(X,, X,, €). (22.1)
Noting the independence at dimension 1 of the m-vectors,
E[I(x,, x)I(x,, x,)] = E[I(x, x,)], (2.12)

a computationally simpler, but still consistent estimator is,

N

Kv,o) = 3 (30 106, X0 [NV - DV -2 219)

1t has been shown by Brock, Dechert and Scheinkman (1987) that

S(m,N,€) 4
JN
T N(O, 1) (2.14)

This has become a widely applied statistic in the literature as a test for
independence. Given its ability to shrug off nuisance parameters,’ the BDS
has become a powerful portmanteau statistic for model specification.

3. The Finite Sample Properties of the BDS

While the BDS has found wide application, a principal problem with using
the statistic in data analysis is that it is poorly sized in finite samples. I
document the empirical distribution in 3.1 for the normal distribution* and
find high rates of Type I error in small samples.

One rather striking result is the negative bias of the statistic in samples
under 250 observations. In the left tail of the empirical distribution, the
size of the BDS deviates substantially more from the nominal size than it
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does in the right tail. Controlling for the bias, the statistic is actually skewed
to the right though. Some theoretical discussion of the finite sample bias
is pursued in Section 3.2.

3.1. Monte Carlo Analysis: The Standard Normal Distribution

I look at sample sizes of 50, 100, 250, 500, and 1,000 observations, and
dimensions from m = 2 to 5. Brock, Hsieh and LeBaron (1992) found that
the size of the BDS was least distorted setting € equal to one sample
standard deviation; I used that value throughout the paper. N(0, 1) iid.
pseudo-random numbers were generated using the IMSL subroutine
RNNOF with the largest congruential multiplier.’ The generator is seeded
so that the same random numbers are used throughout all the Monte
Carlo exercises in the paper. Results may be found in Table 1.

The pattern of the first three entries of Table 1 can be summarized
fairly succinctly. For samples under 500 observations, the smaller the sam-
ple size, the larger the empirical size of the test. This holds true at all
dimensions m. For a given sample size, the larger is m, the greater is the

" rate of Type I error.

The distortions at large m are due to the so-called “curse of dimen-
sionality.” Setting € equal to one sample standard deviation should yield,
on average, the population expectation (obtained by numerical integra-
tion) for C(1, €) of 0.52. Atm =5 though, we should expect to find only
(.52)" of the sample, or merely 3.8 percent of all observations.®

The magnitude of the Type I error rates is substantial. At N = 50, a
nominal 10 percent tests rejects more than 33 percent of the time at m =
2, and almost 40 percent of the time at m = 5. Nominal 5 percent tests at
N = 50 reject more than five times too often at m = 2, and six times too
often at m = 5. Though not reported, the size distortions are even more
substantial for more entropic distributions like the uniform.

The empirical sizes of the test do drop fairly rapidly. At N = 250, the
10 percent test is sized at less than 16 percent for all choices of m.
Similarly, no 5 percent test is larger than 8.5 percent. For N = 500 and
N = 1000, the BDS is a highly reliable statistic, even in the extreme tails.

3.2. An Analysis of the Bias and Skewness in the BDS

Our discussion to this point has focused on the nominal size of symmetric
confidence intervals. The portrait of Table 1 is far more complicated if we
look at the left and right tails of the statistic separately.
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Table 1. Monte Carlo Analysis of the BDS Statistic* Standard Normal
Distribution.

N =50 % <233 % <-196 % <-1.64 % >164 % >196 % >233

m=2 0.0942 0.1444 0.1936 0.1444 0.1132 0.0792
m=3 0.0998 0.1502 0.2028 0.1468 0.1166 0.0876
m =4 0.1096 0.1590 0.2182 0.1512 0.1222 0.0960
m=35 0.1178 0.1676 0.2318 0.1594 0.1324 0.1056

N0, 1) 0.0100 0.0250 0.0500 0.0500 0.0250 0.0100

N=100 % <-233 % <-196 % <-164 % >164 % >196 % >233
m=2 0.0352 0.0692 0.1158 0.0976 0.0670 0.0400
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Table 2. Critical Values for the BDS Statistic* N(0, 1) Random Variables

N =50 0.010 0.025 0.050 0.950 0.975 0.990
m=2 -6.2303 -3.5823 -2.8964 29174 3.7507 5.7867
m=3 —-6.5220 -3.6787 0.1238 3.1383 3.9996 6.6066
m= —6.5871 -3.9201 0.1328 3.3287 4.3240 6.8051
m=>5 -6.6698 —-4.0927 0.1374 3.6838 4.7889 7.7884
N(D, 1) -2.33 -1.96 -1.64 1.64 1.96 233
N =100 0.010 0.025 0.050 0.950 0.975 0.990
m=2 -3.2091 -2.5096 -2.1630 2.1607 2.6403 3.6753
m=3 —3.2480 -2.5151 -2.1616 22227 2.7991 3.9559
m=4 -3.2436 -2.5700 -2.1821 2.2966 2.9293 4.2858
m=35 -3.4224 -2.5748 -2.2530 2.4914 3.1222 4.4838
N = 250 0.010 0.025 0.050 0.950 0.975 0.990
m=2 -2.6196 -2.1479 -1.8349 1.8327 2.2388 2.9627
m=3 -2.5776 -2.1140 -1.8227 1.9151 2.3497 3.1784
m=4 -2.6011 -2.0931 -1.8299 1.9133 2.4257 3.2927
m=5 —2.6547 -2.0894 -1.8178 1.9681 2.5199 3.5256

m=3 0.0368 0.0777 0.1238 0.1080 0.0676 0.0416
m=4 0.0378 0.0800 0.1328 0.1020 0.0736 0.0494
m=>5 0.0470 0.0852 0.1374 0.1078 0.0786 0.0568
N=250 % <-233 % <-196 % <-1.64 % >164 % >19 % >2.33
m=2 0.0136 0.0364 0.0730 0.0688 0.0380 0.0208
m=3 0.0134 0.0364 0.0746 0.0710 0.0478 0.0260
m=4 0.0124 0.0370 0.0742 0.0744 0.0476 0.0270
m=>5 0.0138 0.0350 0.0800 0.0772 0.0498 0.0292
N=500 % <-233 % <-196 % <-1.64 % >1.64 % >19 % >233
m=2 0.0088 0.0280 0.0584 0.0560 0.0312 0.0160
m=3 0.0092 0.0320 0.0672 0.0604 0.0356 0.0164
m=4 0.0104 0.0284 0.0628 0.0640 0.0376 0.0184
m=>5 0.0084 0.0284 0.0648 0.0652 0.0408 0.0216
N=1000 % <-233 % <-196 % <-1.64 % >1.64 % > 196 % >2.33
m=2 0.0092 0.0308 0.0640 0.0544 0.0284 0.0132
m=3 0.0112 0.0288 0.0592 0.0536 0.0324 0.0148
m=4 0.0124 0.0300 0.0600 0.0632 0.0344 0.0132

* N = the sample size, and m = embedding dimension. The simulations for N = 50, 100,
250 are based on 5000 replications. For N = 500 and N = 1000, I used 2500 replications. € is
one sample standard deviation.

For N = 50 and 100, the BDS statistic is biased down from zero. The
statistic is about 1.5 times as likely to violate a lower 90 percent or 95
percent critical value, as the corresponding upper critical value. This bias
is more pronounced at higher dimensions. At N = 50 and m = 2, 19.36
percent of the time the statistic takes on a value less than —1.64, but only
14.44 percent of the time does it exceed 1.64. At m = 5, the bias has ex-
panded to a 23.18 percent rejection at —1.64 and 15.94 percent at 1.64.

At N = 250, the BDS is essentially balanced for 10 percent tests. The
rejection frequencies are within sampling error, though still a bit too large

. * N is the sample size, m is the dimension of the test. Along the top row are the alpha
levels, and below them are the empirical critical values that size the test to the appropriate
alpha level. € is one sample standard deviation. I use 5,000 replications.

overall. For 5 percent tests, the imbalance actually shifts slightly to the
right for N = 250.

Rejections in the right tail seem to involve very strong outliers. The
1 percent tests in the right tail should reject only one-fifth as often as the
5 percent test. For all values of m and N < 1,000, a 1 percent test is instead
one-half as likely to reject as a 5 percent test. The strong outliers in the
right tail contribute to a rather counterintuitive result. Although the sta-
tistic rejects more frequently in the left tail than the right, the empirical
critical values needed to properly size the BDS are actually larger in the
right tail than the left. In Table 2, I provide the empirical quantiles of the
BDS for N = 50, 100 and 250 for the standard normal distribution. With
only one exception (N = 50, m = 2 for a 2 percent test), the critical values
are larger in the right tail of the distribution.

Clearly something more complicated is going on than a monotone
convergence to normality. At small sample sizes, the skewness in the
BDS is dominated by the bias in the numerator. The sample average of
S(m, N, €) - C(m, N, €) — C(1, N, €)™ is negative. Note that E[C(1, N, £)] =
C(1, €), and E[C(m, N, €)] = C(1, &)". Therefore,

E[C(1, N, ) — C(1, &)"] = 0. (3.1)
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Table 3. Bias and Skewness Diagnostics®.

N =50 Numerator #>0 #<0 BDS  PosStd.Dev. Neg.Std.Dey.
m=2 -0.0015 2149 2851 -0.1883 0.0496 0.0509
m=3 -0.0022 2101 2899 -0.2925 0.0591 0.0611
m=4 —0.0022 2032 2968 —0.2820 0.0523 0.0562
m=35 -0.0017 2006 2994 -0.3761 0.0410 0.0455
N =100 Numerator #>0 #<0 BDS PosStd.Dev. Neg.Std.Dev.
m=2 -0.0007 2196 2804 -0.1254 0.0530 0.0534
m=3 -0.0010 2146 2854 —(0.1461 0.0626 0.0634
m=4 -0.0010 2074 2926 -0.1608 0.0553 0.0570
m=35 -0.0008 2039 2961 -0.1585 0.0432 0.0449
N =250 Numerator #>0 #<0 BDS  Pos.Std.Dev. Neg.Std.Dev.
m=2 -0.0002 2271 2729 -0.0722 0.0547 0.0546
m=3 -0.0003 2223 2777 -0.0849 0.0645 0.0644
m=4 -0.0003 2219 2781 -0.0935 0.0572 0.0569
n=35 -0.0003 2176 2824  —0.0964 0.0444 0.0442
N =500 Numerator #>0 #<0 BDS  Pos.Std.Dev. Neg.Std.Dev.
m=2 -0.0002 442 558  —0.0655 0.0549 0.0549
m=73 -0.0002 452 548  -0.0759 0.0646 0.0646
m=4 -0.0002 464 536 —0.0690 0.0571 0.0571
m=5 -0.0001 458 542 -0.0627 0.0441 0.0442

Numerator = C(m, N, 1.0) - C(1, N, 1.0)" Std.Dev. = [Eq(2.13)

* N is the sample size. For N = 50, 100, and 250, the sample averages are for 5000 rep-
lications. For N = 500, there are 1000 replications. The first statistic is the sample average of
the numerator. The next two statistics are the number of the times the numerator was
positive and negative. Pos.Std.Dev. is the average standard deviation when the numerator is
positive, and Neg.Std.Dev. is the average when its negative. I set & = 1.0. The input is N(0,
1) noise.

From Jensen’s inequality though,
E[C(1, N, &)™] > (E[C(1, N, £)])™ = (1, &)™ 3.2)
Substituting back into (3.1),
E[C(m, N, &) - C(1, N, &)"] < E[C(m, N, &) - C(1,e)"] =0, (33)

yielding the negative bias in the numerator of (2.14)’.

As shown in Table 3, this bias® is fairly substantial at N = 50, and N =
100. Even at m = 2, nearly 60 percent of the statistics are negative. The
bias diminishes fairly rapidly and is no greater than 3.5 x 10~ for N > 250.
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Once we divide by the standard deviation, the bias in the BDS statistic
itself is amplified. At N = 50 and m = 5, the sample mean of the BDS
statistic in 5,000 replications is —0.3761. The bias falls by half when the
sample size is doubled, and for N > 250, the bias in the BDS in greater
than —0.1.

At the small sample sizes, the standard deviation is actually mitigating
the bias. Note that for N = 50 and N = 100, the standard deviation when
S(m, N) is positive is smaller than when it is negative. While the statistic
rejects far too often in both tails, the negative skewness would be even
more pronounced if the variances were balanced. The use of C(1, N)" in
place of the C(m, N) in constructing the variance diminishes the finite
sample bias of the BDS.

When S(m, N) exceeds zero, it is either because C(m, N) is excep-
tionally big or because C(1, N) is exceptionally small. It is the latter case
which effects the variance. I numerically integrated the correlation integral
C(1, ) with € = 1.0, and arrived at an estimate of 0.5204. At N = 50 with
m = 2, the sample average of C(1, 50) is 0.5172 when S(m, N ) is positive
and 0.5231 when it is negative. K(N) moves monotonically with C. The
sample average of K(50)™ is 0.0901 when the BDS is positive and 0.0947
when it’s negative. A similar pattern holds for both C and K at all
dimensions in the two small samples.

A detailed decomposition of the variance reveals why the standard
deviation falls when S(m, N) is positive. In the variance, there are four
terms in (2.9) of order o(C™) or larger. While one of the four terms enters
with a negative sign, -m*KC*"?, the other three dominate. When the BDS
takes on the rare positive value, the estimator for the variance magnifies
a small realization of C(1, N) exponentially. At N = 50, the standard de-
viation is about 3 percent smaller at m = 2 and 11 percent smaller at m =
5. By N = 100, the differences have fallen below 5 percent.

These outlying realizations explain the pattern of critical values in Table
2 as well. For the BDS to be positive, ceteris parabus, C(1, N) must be
unusually small, but this in turn biases the variance downward. The com-
bination of the makes the ratio of 1 percent to 5 percent right tail rejec-
tions quite close (about 1:2, rather 1:5). Once centered at its’ sample mean,
the BDS is actually skewed to the right, not to the left. Consider m = 2
where the bias in the numerator is the smallest. At N = 50, the skewness
is 0.3647, and at N = 250 it is still 0.3318. The skewness in the standard
deviation diminishes more quickly, falling from 1.1317 at N = 50 to 0.0745
at N = 250. Fat tails on both left and right give a leptokurtic distribution,
with excess kurtosis of 1.1962 at N = 50 and 0.1455 at N = 250,
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4. The Simple Nonparametric Test (SNT)

In this section, I propose a new U-statistic similar to the BDS. It has three
main advantages. It is computationally simpler, involving only calculations
of order N, as opposed to N? for the standard BDS. The variance of the
U-statistic I derive is similar to that of a binomial random variable. Third,
it will be documented in Section 5, the statistic is properly sized in samples
as small as 50.

Our principal modification to the BDS is the kernel function. Replace
(2.2) with the function h:R — R,

h(x) = I[x, < €] = ﬂ_u. Hﬁnmwzwn = I(x, €). (4.1)

The correlation integral at dimension m is given by

0(m,e) = [ [T 10eir e)IF(x,.,). (42)
X

A consistent estimator of (4.2) is

o(m, N, &)=Y T I(X,,., €)IN. (43)

Since the kernel (4.1) depends only on a single realization, the correlation
integral sums, under the assumption of i.i.d., chains of m-independent
events. This simplifies the analysis considerably.

The expected number of m-chains with a value of 1 in a sample of size
N is
N

_._. = 2®H3- MV = MNHQ

The variance is given by

A Y

X kz 0(m, £)*(1 - 8(m, £))¥-* (4.4)

N

x=0)

% Hc 6(m, £)*(1 - 8(m, €))V=* — N26(m, £)?

= NO(m, e)(1 - 8(m, £)). (4.5)

A simple test for i.i.d. can then be constructed using consistent estimators
of these two moments. Mizrach (1991) proves that the following statistic
has an asymptotic normal distribution,
IN [8(m, N, e)—6(m -1, N, €)8(1, N, €)

[6(m~1, N, £)8(1, N, €)(1-6(m ~1, N, £))(1 - 6(1, N, )

<45 N(O, 1).

(4.6)
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Table 4. Monte Carlo Analysis of SNT* M0,1) Random Variables.

N=50 % <-233 % <-19 % <-1.64 % >164 % >196 % >233

m= 0.0236 0.0680 0.0757 0.0504 0.0418 0.0162
m= 0.0150 0.0412 0.0776 0.0384 0.0176 0.0078
m=4 0.0060 0.0264 0.0754 0.0288 0.0126 0.0036
m==5 0.0060 0.0080 0.0342 0.0238 0.0102 0.0028
N(O, 1) 0.0100 0.0250 0.0500 0.0500 0.0250 0.0100
N=100 % <-233 % <-196 % <-164 % >164 % >196 % >2.33
m=2 0.0200 0.0512 0.0752 0.0526 0.0378 0.0154
m=23 0.0146 0.0330 0.606 0.0380 0.0200 0.0082
m=4 0.0130 0.0376 0.0682 0.0350 0.0156 0.0062
m=35 0.0042 0.0200 0.0584 0.0316 0.0152 0.0050
N=250 % <-233 % <-196 % <-164 % >164 % > 196 % > 233
m=2 0.0136 0.0276 0.0682 0.0590 0.0236 0.0120
m=73 0.0142 0.0292 0.0568 0.0500 0.0218 0.0078
m=4 0.0118 0.0308 0.0630 0.0416 0.0196 0.0070
m=5 0.0130 0.0310 0.0692 0.0340 0.0176 0.0072
N=500 % <-233 % <-196 % <-164 % >164 % >196 % > 233
“m=2 0.0146 0.0310 0.0538 0.0472 0.0300 0.0106
m=3 0.0130 0.0324 0.0576 0.0460 0.0226 0.0108
m=4 0.0130 0.0294 0.0614 0.0428 0.0224 0.0088
m=35 0.0128 0.0310 0.0614 0.0400 0.0194 0.0080
N=1000 % <-233 % <-196 % <-1.64 % >164 % > 196 % > 233
m=2 0.0120 0.0256 0.0572 0.0474 0.0212 0.0096
m=3 0.0128 0.0310 0.0602 0.0484 0.0246 0.0082
m =4 0.0138 0.0310 0.0606 0.0430 0.0196 0.0072
m=>5 0.0114 0.0314 0.0618 0.0436 0.0188 0.0078

* All exercises are based on 5,000 replications. m is the dimension of the test, and N is
the sample size. € is the sample mean.

While we have stated many advantages for the statistic (4.6) at the outset,
the principal advantage will be if (4.6) can improve substantially over the
standard construct, (2.14), in finite samples. I turn to that in the next
section.

5. Finite Sample Properties of the SNT

The Monte Carlo analysis of the SNT (4.6) follows the same design as in
Section 3. Results are in Table 4. I found in Mizrach (1991) that good
power was achieved setting € equal to the sample mean. The random
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number generator provides the identical random numbers used in Tables
1 and 2. Since calculations here are of order N, I have used 5,000 repli-
cations at all sample sizes.

For all sample sizes and dimensions, the SNT is more accurately sized.
This is especially true in the two small samples. At N = 50, m = 2, (4.6)
rejects 12.6 percent of the time at + 1.64, compared to 33.8 percent for the
BDS. At m = 4, the advantage is 10.4 percent to 58.5 percent for the BDS.
At N = 100, the SNT still enjoys a nearly 3:1 advantage.

In 5 percent tests, the new statistic measures in at 10.9 percent at
N =50 with m = 2, and 8.9 percent at N = 100. The corresponding results
for the BDS from Table 1 are 25.8 percent and 13.6 percent respectively.
The advantage in both small samples is again nearly threefold.

The SNT betters the standard BDS at all the remaining sample sizes,
though the margin of victory grows slimmer. For N > 250, the differences
can be attributed solely to sampling error. Overall, these modifications
result in a fairly dramatic improvement in finite sample performance.

I now turn to the empirical part of the paper, taking a brief detour to
survey the existing literature.

6. A Brief Survey of the Literature

While there have been a number of studies on U.S. economic and financial
time series,’ there have been few examinations of business cycle data from
a nonlinear perspective for Europe. This gap in the literature is especially
large because many observers have claimed that U.S. data may be atypical.
Blanchard and Summers (1986) note differences in labor markets in their
explanation of high rates of European unemployment. de Jong and Shepard
(1986) cite differences in the market structure of the United States.
Frank, Gencay, and Stengos (1988) were the first to search for “chaos”
in European macroeconomic aggregates. The authors found evidence of
low dimensional structure in Italian, British, and West German national
income series after filtering with ARMA and GARCH models. Frank,
Sayers and Stengos (1992) have isolated nonlinear structure in Canadian
unemployment rates. Stevenson, Jones and Manning (1992) employ
threshold models for unemployment data in the United Kingdom.
Exchange rate modeling has been a particularly fruitful area for nonlinear
approaches. The leptokurtic (“fat-tailed”) distributions of spot exchange
rates have been analyzed by Hsieh (1989). Mizrach (1992) uses nearest
neighbor methods to forecast EMS exchange rates. De Gooijer (1989)
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looks at world stock returns. None of these papers though has looked
beyond GARCH effects.

In summing up the U.S. evidence, it seems fair to conclude that
nonlinearities not captured by the GARCH filter are in macroeconomic
time series. In the next section, I see if the United states evidence extends
to Europe or whether the United States is indeed atypical.

7. An Application to European Macroeconomic Time
Series

This application attempts to answer whether the size improvements of the
SNT come at the expense of power. I compare the tests using European
macroeconomic time series.

7.1. Data

I collected monthly series for France, Germany, and Italy for the period
March 1979 to June 1992. This is the period in which many countries
throughout Europe returned to a fixed exchange rate regime within the
European Monetary System (EMS). I look at the broad M3 equivalent
money supply, deflated by the GDP price deflator, indices of unit labor
costs and industrial production, the GDP deflator and the unemployment
rate. The data are from public sources in each country and collected at the
Federal Reserve Bank of New York.

A previous study by Mizrach (1992) had difficulty detecting any funda-
mental nonlinearities in exchange rates from that period. It remains to be
seen whether they show up in the macro data.

7.2. Empirical Results

To analyze nonlinear dependence, I first wanted to remove any linear
dependence in the data. I fit ARMA (p, 1, 0) models, choosing p so as to
minimize the Bayesian Information Criterion (BIC),

log(6?) = p log(N)/N, (7.1)

where &7 is the estimated variance and N is the sample size. The BIC pe-
nalizes the likelihood for extra parameters.
In Table 5, I use the BDS and SNT to analyze the residuals from the
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Table 5. Tests for Nonlinear Dependence* AR(p) Filtering

France

Variable BDS SNT ARCH [q] Filter
Real M3 1.461 2.006" 0.005 [g=1] AR(2)
Indus. Prod. 4.814 3.478» 12.829 [q=2] AR(2)
Current Acct. 2.426 1.621 22.128 [q=3] AR(1)
Unit Labor ~1.608 3.833 18.128 [q=3] AR(3)
Prices -1.013 0.045 0.001 [g=1] AR(2)
Unemployment — — - —
Germany

Variable BDS SNT ARCH [q] Filter
Real M3 7.650 4.133 0.025 [q=1] AR(1)
Indus. Prod. 3.741 2.3964 10.801 [q=1] AR(3)
Current Acct. -1.331 0.071 9.377 [q=2] AR(4)
Unit Labor 1.456 0.414 10.532 [g=2] AR(3)
Prices 0.049 -0.006 0.824 [q=1] AR(9)
Unemployment -3.607 -3.146% 0.290 [q=1] AR(1)
Iraly

Variable BDS SNT ARCH [q] Filter
Real M3 0.018 1.971~ 0.615 [g=1] AR(2)
Indus. Prod. -0.049 0.015 0.009 [g=1] AR(2)
Current Acct. -1.331 -3.136 1.110 [g=1] AR(3)
Unit Labor 1.456 -0.069 0.015 [g=1] AR(2)
Prices 0.049 -0.044 1.054 [q=1] AR(9)
Unemployment -3.607 -3.026 37.559 [q=9] AR(8)

s I used the Bayesian Information Criterion to select the order of the AR filter. I set the
dimension m = 2. 95 percent critical values for the BDS at this sample size are approximately
—2.51, 2.64. At this sample size, you can use the asymplotic distribution of the SNT, the N,
:,.. indicating + 1.96 for critical values. The ARCH statistic is Nr?, which has an asymptotic
X*(q) distribution. A * indicates the residuals were squared in the SNT test.

linear ARMA filters. The BDS and SNT find temporal dependence in
French industrial production, German real money balances, industrial
E.oa._..n:o: and unemployment, and Italian unemployment. The SNT finds
nonlinear dependence in four series that the BDS does not: French real
money balances and unit labor costs, and Italian real money balances and
the current account. The BDS rejects i.i.d. for the French current account
when the SNT does not.

It might be argued that the U-statistics are simply picking up dependence
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Table 6. Tests for Nonlinear Dependence® ARCH(q) Filtering

France

Variable BDS SNT Filter
Indus. Prod. 2.527 3.426" ARCH(2)
Current Acct. 3399 3.864% ARCH(3)
Unit Labor -0.607 4.134 ARCH(3)
Germany

Variable BDS SNT | Filter
Indus. Prod. 1.229 -0.107 ARCH(1)
Current Acct. -0.081 -0.691 ARCH(2)
Unit Labor 5.021 5.106" ARCH(2)
Italy

Variable BDS SNT Filter
Unemployment -0.153 3.572 ARCH(9)

* [ used the Bayesian Information Criterion to select the order of the ARCH filter. I set
the dimension m = 2 for the U-statistics. 95 percent critical values for the BDS at this sample
size are approximately —2.51, 2.64. At this sample size, you can use the asymptotic distribu-
tion of the SNT, the N(0, 1), indicating + 1.96 for critical values. A # indicates the residuals
were squared in the SNT test.

in second moments from autoregressive conditional heteroscedasticity
(ARCH). I used the Lagrange multiplier test for ARCH(q) dependence.
The statistic, Nr%, where N is the sample size and r* the goodness of fit for
an OLS regression on ¢ ARCH lags along with a constant, is distributed
X*(g). 1 find ARCH dependence in three French series, three German
series, and one Italian series. Only in one case, German labor costs, do I
find ARCH effects when neither the BDS nor the SNT reject. The ARCH-
LM test fails to find dependence in three cases that are caught by the U-
statistics.

I wanted to find out how many of the rejections in Table 5 were the
results of non-ARCH temporal dependence. I fit ARCH(q) models to the
AR(p) residuals and re-tested the ARCH residuals using the U-statistics.
I only fit ARCH models to those series that had significant ARCH effects
in the LM-test, and I chose the order g of the ARCH regression using the
BIC. Results of the second round of tests are in Table 6.

The BDS and SNT both reject for the French current account (which
had been previously missed by the SNT), and German labor costs. The last
case is interesting since neither the BDS nor the SNT rejected with the
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ARMA residuals. Dependence in German industrial production and cur-
rent account does seem to be due to ARCH effects because neither the
SNT nor the BDS find additional temporal dependence.

The SNT again shows its power with the ARCH residuals. It detects
three cases of nonlinear dependence that the BDS misses: French industrial
production and labor costs and Italian unemployment. Conversely, the
BDS does not catch any nonlinearity that the SNT misses.

8. Conclusion

By achieving reasonable results in samples as small as 50, the new simple
nonparametric test (SNT) extends the useful range of U-statistic inference.
Economic data, even those at an annual frequency, can be analyzed using
the asymptotic distribution of the SNT.
~ Our analysis of the bias and skewness in the BDS should prove useful
in ::@m_.mﬂms&nm the power of tests based on the correlation integral. A
negative bias though is bad for detecting processes with serial correlation
like many economic time series. _
Zmﬁwnr (1991) examines the power of the SNT for a number of data
generating mechanisms. This paper extends that work by looking at real
economic data from the EMS. The SNT successfully uncovers nonlinearity
in six cases that the BDS misses, while the BDS only captures one case
Emm the SNT does not. Our real world experiments bear out Mizrach’s
conjecture that the SNT offers improvements in both size and power.
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Notes

L. The seminal reference is Hoeffding (1948). My notation follows Serfling (1980).
2, Unnwﬁ and Keller (1983) prove the theorem providing that any one of the following
three conditions holds: (i) [X,] is uniformly mixing in both directions of time, G}, — o, and
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forsome >0, sup  Elh(x,, -, x "% < e (ii) {X,)] is uniformly mixing in both
1Si et ... <t
directions of time with mixing coefficients satisfying Z&(N)<e. o’ # 0, and
sup Eh(x =0 X, ) <o (iii) [Xy] is absolutely regular with coefficients B(N)
NSh st ge -2ty
satisfying TR(N)***¥ < co for some § >0, 6” # 0, and sup  Elh(x,, -+, 8. )" < ea

1St g 5l

3. Brock and Dechert (1989) show that (2.14) holds for residuals from a VN consistent
estimate of a nonlinear autoregressive process.

4. A wider Monte Carlo investigation with qualitatively similar results can be found in
the monograph of Brock, Hsieh and LeBaron (1992) and also in Mizrach (1991).

5. IMSL generates random numbers using a multiplicative congruential method. The
form of the generator is x, = cx,, mod(2" - 1). Results differed substantially with choice of
¢, but RNNOF had the best small sample properties with ¢ = 950706376 and no shuffling.
Fishman and Moore (1986) discuss the optimality properties of this choice of ¢.

6. The curse also arises in nonparametric density estimation where rates of convergence
for kernel estimators typically depend on the di ion of the distrib See Stone (1980)
for some theoretical results.

7. I thank Dee Dechert for this point.

8. [ fixed € = 1.0 in Table 3, so I will hereafter suppress the argument.

9. See C. L. Sayers’ survey, “Testing for Chaos and Nonlinearities in Macroeconomic
Time Series,” in this volume.
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l_ m THE TIME REVERSIBILITY
TEST WITH APPLICATION TO
FINANCIAL DATA

Philip Rothman

1. Introduction

Asset market data provide information on intertemporal marginal rates of
substitution and transformation. A great deal of work has been done
studying the time series behavior of returns on wo._..n_m and mwonwm and the
implications of such behavior as a check on the consistency of _Eo:mavm:m_
asset pricing models. Most research has focused on tests of consumption-
based asset pricing models. More recently, Cochrane ( _.om: pioneered the
development and testing of production-based asset pricing models. )

Given this important and voluminous literature produced by m:wn.n._m_
economists, Cochrane and Hansen (1992) noted a stylized fact of n.n__.::c-
rium business cycle research which they called :mEd.amm:m.: Specifically,
asset prices are often ignored in assessing and evaluating :.n. mnlongnm
of dynamic macroeconomic models. They argued that new utility functions
developed in the finance literature to account for m_._o_.:m.-ccw ncm:._.qnm of
asset pricing data may substantially change the dynamic properties of
equilibrium business cycle models and the welfare ".:..mqm_m n.m_._._mn_ out
with them. As such, advances made in understanding the time series
behavior of asset prices can have very important implications for macro-
economic modeling.
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